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Abstract— Various two-dimensional equations for plane problems have been deduced systematically
and directly from the three-dimensional theory of transversely isotropic bodies without any ad hoc
assumptions. These equations can be used to construct new refined theories for the plune problems.
In the case of homogencous boundary conditions. the cquations obtained are exact in the sense that
a solution of them will satisfy all the balance equations of the three-dimensional theory. In the case
of nonhomogencous boundary conditions, the approximate cquations are accurate up to the second-
order terms with respect to plane thickness. The results of this paper also venfy the stress assumption
in the classical pluane stress problem,

L. INTRODUCTION

This paper presents the second part of my resciarch on deducing two-dimensional theories
from three-dimensional theory for a transversely isotropic body. We have shown in the first
part {Wang, 1989a) that the general deformation of a transversely isotropic body can be
decomposed into two parts: the anti-symmetric deformation and the symmetric defor-
mation. The two-dimensional problems associated with the two types of deformation have
been called plate and plane problems, respectively. With the first part of this research
focusing on the plate problems, we will investigate the plane problems in this paper.

The method used to deduce the two-dimensional theories from three-dimensional
theory directly was originally introduced by Cheng (1979) for the development of refined
plate theorics. The new results obtained by Wang (1985, 1989a,b.c) and by Barrett and
Ellis (1988) have indicated that application of Cheng's method in plate theory is quite
successful. A more general procedure of deriving approximate lower-dimensional theories
from a higher-dimensional theory with the aid of symbolic computation has been proposed
by Wang (1989¢).

Unlike the plate problems, the equations of classical two-dimensional plane problems
for isotropic materials are well developed in theory and widely used for various engineering
problems. The successful application of the clussical plane theory makes it scem unnecessary
to establish any refined theories, as have been proposed for classical plate theory. Conse-
quently, any attempt to suggest a new plane theory may result in some controversial (or,
hopefully, significant) issues and effort toward this has hardly been found in the literature.
As the first step toward refined plane theories, we will concentrate only on two topics in
this paper: (i) to derive new and exact two-dimensional equations directly from the three-
dimensional theory for the classical plane problems ; and (ii) to generalize the classical plane
problems by allowing nonhomogeneous boundary conditions at the top and bottom surfaces
of planes and then give the corresponding two-dimensional approximate equations. [t is
not our purpose to develop a complete refined theory for plane problems here. Some
important issucs for a complete refined theory, such as the specification of boundary
conditions at edges, are open for future research.

Scction 2 gives the exact two-dimensional plane equations of infinite order for trans-
versely isotropic bodies. These equations will serve as the basis for the derivation of the
finite order two-dimensional plane equations later. Sections 3 and 4 present the major
results of this paper: the exact plane equations for homogencous boundary conditions and
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the approximate plane equations for nonhomogencous boundary conditions. Finally, we
summarize the paper and discuss some issues for future rescarch in Section 5.

2. EXACT TWO-DIMENSIONAL PLANE EQUATIONS FOR A TRANSVERSELY ISOTROPIC
BODY

Let us consider a lincar and transversely isotropic elastic body occupying a domain of
Qx [h2>:2 —h 2 ina rectangular coordinate system (v, v.z). where the x—v plane
is the plane of isotropy and Q is an arbitrary region on it. Let &} and #F be three-
dimensional displacements of the transversely isotropic elastic body in the v, v and = direc-
tions. respectively. Since this paper is to deal with the plane problems. we will only consider
the symmetric deformation of the transversely tsotropic body caused by a set of symmetric
surtace loads with respect to the x-1 plane.

According to Wang (1989a). the three-dimensional displacements U, V and W in this
case can be represented in terms of the mid-plane displacements w. £ and rotation ¥ as

U=CSouu+é L(cu+c )= L. V=CSr+0.LIw+00)~0.L, W,
W=L,y—L.(¢u+c0). "

where
u=Ut_y. =V _o Y=0"00]_

and the differential operators are defined to he

bl M) h} , ! i
er=""0 a0 =" a2 L 2w, o P,
‘X cr oz x b
. R $ | | S , y
L, = -"V'(‘Z:\ - i‘l.“)' Liy= Q. L= g{..V'['era — (@7 4+ QL + 2]
/ i

The coetlicients x, ff, 7 and the differentind operators €S, SN, 88, CC,, Q.,, Q.. are given
in Appendix A, Note that the differential operators must be interpreted as representing
series in powers of operators (5,V)*,

When a transversely isotropic body reduces to an isotropic body, the differential
operators L, L, L., and L, 10 (1) become

s ey

L zsinV: / 1 v sin Vz / sin V= / L L
= - . Ly, = zcos Vo~ . L, = — L, = —1L,:
2x V 2y \Y v 1 v
and expression (1) reduces to the form
U v 7 | zsinVz (¢
=cosV: - e
I v) 22V e
” sin V:'p I v sin V= 2)
= - Y- zcos Vo — e, 2
\% 2% A%
where ¢ = e+ e+, 2 = 1 =2v and v is Poisson’s ratio.
The corresponding stresses follow from constitutive equations (see Appendix A) :

.I"" I-JI(T\ v = L“ﬁ(CS() + V: Lu) - :11“".!:)(11'| Lu - .I'ﬂ: L.’,u](" o + ‘1l'l‘) - 21![.?5(“81,(" U
—(UBVI Ly~ 0Ly = 2t L. (3)
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vA o, = [B(CS,+ VL) = 2apsic (L, =56 Lo, )(C o+ E,0) = 22usi CSof u
- (;tﬂV:L Ly —.I'(.‘:Lw - 21#3(;;(1(.([‘ Iw)¢~ (4)

Ao =(CSe+ VL, —ul.L )¢ u+¢,0)— (VL —ul.L)W. (35)

Aolo, = CS(C e+ )+ ¢ LG u+é0)~¢ LY. (6)

Ao, = =iV SNyu+(C.L, — L )CA(Cu+ ) —(C.Lyy — L), (7
Aite,. = =iV SN+ (C.L, — L) (Cu+é,0)—(C.Lyy — L)y 8)

The symmetric surface loading conditions on the two surfaces = —4 2 and #/2 can

be specified as:
o.(x. v h2) = pAx.v). o (vy =hi2) = pAx.y),
g v ) =g () oy —h2) = —q,(x,r),
a. (. v i) =g xov). g (xove=h2) = —q. (X, 3): &)

which lcad to the following system of tincar differential cquations for the mid-plane dis-
placements and rotation (i, r.))

2:“(" .".:”("‘. —Z|1 u /,l\‘l)‘
'—"'IJ)V:‘S“‘VO’FE.':F\\ E.‘.“!’n _Z\‘pr U} - /14"‘(/\\' . o= /[/2'
};33(‘1”‘ —.\'.”‘,V".\’N',-kﬁn(",. —-}.:“f". w /I_HI(]“
(10)
where
S = CSa+ VL, —pdLay. £4y=ViLyy —pdiLy. Ly = d.L,— Lo,
£\|=(~'_-LM—L¢, :=/1/2. (ll)

Equations (10) represent the exact two-dimensional equations of the plane problems for
atransversely isotropic elastic body. Obviously, when applying the homogencous boundary
conditions, we obtain the exact equations for the planc stress problem in classical two-
dimensional clasticity (Timoshenko and Goodier, 1969). To consider the plune strain
problem, we have to use the symmetric surface displacement or strain conditions (Wang,
1989Yd).

However, in general, these equittions are not applicable since they are of infinite order.
To develop a set of practical governing equations of finite order for the plane problems, we
will study the general solution of (10) first.

Let Dy be the determinant and D, (given in Appendix A) be the cofuctors of the
differential operator matrix in (10). The general solution of (10) ¢an be expressed as (Wang
19894)

! 3 3
= Z Db, v= Z Db, ¢y = z D\, ; (12)

t=1 =1 =]

the values of @, satisfying the differential equations

Db, =X, (i=1.2.3) (13)



led

F.-Y. Wasg
where

Y =A4p. X, = Aidge. Xo=dlq.,.

After some tedious algebraic manipulation. the determinant D, is found to be

Dp == S,:,VJS‘V(,G;). = /t,-’z.
where

(14
G, = :‘323:"‘ZHZ_‘»}_S‘:’S‘V“Z”'

(13
For an isotropic elastic body. G, becomes

h sin Vi
G“::-?: l+ﬁv—h~w . {16)

As in Wang (1989a) for the plate problem. we will investigate solutions (12) and

(13) in the following two sections for the cases of homogeneous boundary condition and
nonhomogeneous boundury conditions, respectively.

3. THE EXACT PLANE EQUATIONS FOR HOMOGENEOUS BOUNDARY CONDITIONS

The classical plane problems constder only homogeneous boundary conditions (i.c.
P = ¢, = ¢, = 0). In this case, corresponding to the three coprime factors of the deter-
minant .. the general solutions of eqn (13) are the sum of the general solutions of the
following governing dilferential equations :

sin (s V=
Vi, =0, ""“V',, b =0, G, =0, z=h2
8,

We now discuss these three equations in detail and show how new plane theories could be
established bused on them,

3.4 Bilurmaonie equation and biharmonic solution

Since the solution corresponding to @ is a special case of the solution given by @, or
@, we canset b, =0, Thus, egns (12) and (13) kad to:

V4(D1 = 0. VJ(D_; = 0.
u=DyP,+Dy,®;, v=Dyp0,+ D50, ¢ =D,0,+D,,0,

By replacing (0.41),2 and ()2 with @, and @, respectively, we can find that:

Vip, =0, V¢, =0,

(17)
u w_aH ey
O fondefrl)
w = O(,«;V:[“fi (Ig’
where
H=e 000, 2= 0 =g,z = ARG

o = F ) =3 + 1= (=)’
“ 62 u ’
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and G and G’ are the shear modulus in the plane of isotropy and perpendicular to it,
respectively.
From eqn (1). the total displacements can be found to be

(1) (1=5) () Sl -mren(5)]

The normal stresses and shear stresses can be found to be

vAle, = {y[H— %[ﬂ(l — UV = 2apexg (22 —/3)(",,.]}((““-*-0‘.1) —-21;11(,«(1 - 10»2:'V:)(1yl_

2 4
+ {u( 1—2)+ ;—1 [(1=x* =)V = 21;(1(;6‘.,.]}#1 + %;Vz [a(;( | +2~puf)é, (@ u+e,0)

-“<{;} + (11(;)2 - ﬂ:)arr]w'

.I"4 (ll O')_r = {/lﬁ+ :-;; [/f(l - “[;)V: - 21““(.‘(110’ _l;)an]}(a\u + ("‘.l') - 21“:1(;'(' - i“";,:ivz)‘ M

4

. (1 —a’ =)V =2apx,0,, }'l/ + {.,1 V:[“u( l+a~puMe (du+d,r)

B s
‘“(y + (111,’)‘ —/‘")‘7“]'1’.

t9 ty
-

+{;¢(l —2)+

A I-AI .. = (l + ')(l -__1) V:)(n\'“'i"l?r") + (lu+

™~ ll

v

[(aag — YD+ 0,0)— ] - ;5 A

Rnn

a,z’ :
Ao, = <l - AV )((7 v+ o)+ 5

]
{rmr-rsnin-00]

B i:2 b) ;—f - )? 102
Ao, = —:1(-V'<l _ ‘?(6 ~V')u+:<a1(' / _ Al l‘ﬁ)*"’l‘(i“o) :'V‘)

’ a 6pa’

1 - l—pf—a® ,_,
% 0 (@ u+0d,0)— :(-*;E + M"TE» Z'V“>0xl//.

) i:Z 2 A I— g : 22
Ailen = -:1(,.v-(| g \V-)v*—:(aa( B _ BU =) +w(xto) :-v-)
: 6 a 6px”

| —a
><f7,.(r7‘u+0,..v)—:( —+ é’:fi « v )7.// (20)

Substituting (17)-(19) into the expressions for the total displacements and stresses, we
obtain the following results:

U h? Y\ |(0.H D,
A A ) e
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W= JG:V:H. (22)

and

R, P .
Ao, = — 21;11(;[2‘ vy v- (1.4 -2 (;) )]c"_(H+uan'[(3x, —ux; ) H —2a.¢,0,],
(23)

. W, -y .
}'!’{ 13 0},}. = -—2;‘(;:2{; I}_{ o ZV‘ '11,‘ - 21(; }; (’n»H‘f',{E’Xin-E{}I'; “;iig}ff“?,ft(("rfpu}.
(24)

.. R, BN

Aoy = 2 VIO, +8,D,) + {21: + %V’(ig—h(;(é) ):l(’“h'. (23)
0.=0.=0,=0. (26)

Define the stress resultant to be

h2 2

. |
(dt‘vvrrn'* Gu')d:c (7;\' 7‘:\} = }lf (G:‘.“ 6?:* Gr.‘): d:~ (2?)

2

!
(“Vn‘ va "Vw) = j‘
h

e

then

" t
l”tl.‘ N\\

Il

h? % N s ,
~23t;m,-[ex,,—— 4 (oq - é’)\?"}’nIl+;xn(,~V‘[(3x‘ ~ et YH = 2000 DL

(28)

IS Ny )
A N, = —=2oux, [asd = (a,; - OF?)V'}J,,,,H + 22, V{32, — o YH — 20,00,

4 6
(29)
-1 : Ill e ]
Aﬁ(} Nu‘ = 1£'v-{;’}t(b¢‘+ay¢n)+ 21,{ + :; a:’f_ ~6’ v- al’&'f{' (30)
T\‘.‘ = Tr: = 0 (3l)

Equations (17)-(19) and (21)-(31) form the hiharmonic (planc) equation system and
its solution is called the biharmonic (plane) solution. Equations (23)-(26) indicate that the
distribution of stresses in the biharmonic solution here is the same as that of the stresses in
the plane stress problem in the classical two-dimensional elasticity, i.e. both have
g.. =0, = 0, = 0. However, the plane stresses in the biharmonic solution also have the
additional second-order terms (=? terms) which change along the thickness of planes unless
x; = 0.

There are three major differences between the biharmonic solution and the solution of
the classical plane stress problem. Firstly, the biharmonic solution is described in terms of
displacement functions. and stresses in this solution are determined by differentiating the
displacement functions. However, the solution of the classical plane stress problem is
described in terms of stress functions, and displacements are derived by integrating the
stress function. Usually, there are difficulties involved in this integrating process, especially
in determining the integration constants. Secondly. there are two independent displacement
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functions in the biharmonic solution and only one stress function in the classical plane
stress problem. However, since stresses in the biharmonic solution involve only the third-
or higher-order derivatives of the displacement functions, while the stresses in the classical
problem involve only the second-order derivatives of the stress function. both the bihar-
monic solution and the classical problem will need the same number of boundary conditions.
Thirdly. the biharmonic solution satisfies all the basic equations of three-dimensional
elasticity, except the three-dimensional boundary conditions. However. it is well known
that the solution of the clussical plane stress problem does not satisfy the three-dimensional
compatible equations as well as the boundary conditions. To satisty the three-dimensional
compatible equations. the higher-order terms (z° terms) have to be included in the stress
function (Timoshenko and Goodier. 1969). Note that by using the displacement functions,
the computible equations are automatically satisfied in the biharmonic solution.

Bused on the above observation. we consider the biharmonic solution as the first-order
theory of plane stress problems for transversely isotropic materials.

3.2, Seretching equation and stretcling solution
[t is casy to see that in this case the solution from @, is zero and the solution from @,

can be reduced to that from ®,. Therefore, we set &, = @&, = 0. Equations (12) and (13)
now lead to (b = )

sin (5, Vi)
w e () =
5V b =0,
= D:l‘b. = D::(b. '// = D:J(l). (32)

The transcendental difterential eqn (32) can be replaced by the following infinite
number of simply algebraic differential equations

5 2
[V-’ ~ (_nn) ](p" =0, n=12...
Solt

O, = (E0Zn-Z,Z:)09,,

v (V1o =0 2 33
sl Q. =0, n=1.2... (33)

The deformation corresponding to @, is given by

Let function @, be

then

llll = (1| Qﬂ‘ l‘ﬂ = ——(j\'Q'I' ‘I”t = 0; (34)
and
2nn: 2nnz
U, = cos( Z‘ )n,Q,,_ Vo= —cos(—f;" )&.Q,,. W =0 (35)
1

The normal stresses and shear stresses can be found to be

dunz 2nncz

Goin = =0,y = 2G cos ( h ’")p\‘\’Qn‘ Coon = Ov Oyin = G cos (”h")((}n Qn '-(7,r.rQn)»

) - ) Y=
Ooiw = -G'f'—,;ln sin (_"Zti)(",.Qn, O.\n = G 7% sin (:'—;?)E,Qn. (36)
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The stress resultants are
Nr.m = Nrrn = lw',n'n = 0' T:.\'n = (—— l)nG’alQﬂ‘ T:m = —(— I)"G'érQn' (37)

The physical significance of the deformation described by (35) is very clear. Firstly, a
plane parallel to the middie plane of the body slides in the same plane and hence still
remains parallel. and planes at equal distances above and below the middle plane slide with
the same displacements in the same directions. Therefore. overall, the body is subject to a
stretching deformation. We call eqn (33) a stretching equation and the corresponding
solution a stretching solution. Secondly, for a given n, the overall stretching deformation is
composed of 2n layers of shear deformations. These shear deformation layers divide the
thickness of the body equally into 2# slices,

~ ~
noh n

{k 2= k+1
< <

k= —n —n+1...., —-1.0.1,..., n—l}.

The middle planc of the Ath shear layer,

__(k+ A

ST

is subject to no deformation (U = V' = W = 0), and the two plancs within the Ath shear
layer above and below the middle plance of the layer with equal distance slide with the same
displacements but in opposite directions. Note that two adjacent shear layers are the
reflection of each other with respect to their common boundary surface (Fig. 1).

Forcach n = 1,2,..., the solution (33) (37) can be considered as an individual term
in the Fourier series expansion of the stretching deformation. Similar to what we have done
for plate problems (Wang. 1989a), a refined second-order plane theory for the deformation
of transversely isotropic bodies can be established by considering only the leading term
n=1in cqns (33) (37) and combining this term with the biharmonic solution (17)--(31).
A solution of the refined plane theory will satisfy all three-dimensional equilibrium equations
for transversely isotropic bodies except the boundary conditions. The boundary conditions
in this theory should be described in terms of the stress resultants or some combination of
mid-plane displacements and rotation, instead of the stress or displacement distributions
over the thickness —/21/2 < = < /2. Three boundary conditions at cach edge of a plane can
be prescribed in the refined theory. We will not discuss the problem of boundary condition
here in detail.

Z={k+1h/2n

Z=(k+0.5)h/2n

Z=kh/2n

Fig. 1. The kth shear deformation layer defined by the stretching solution.
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3.3. The third equation and transcendental solution

It is easy to see that the solution from ®; can be deduced from the solution from ®,.
Hence we set @, = 0 and replace —s5;SN,V°®, and —5;SN,®, by ®, and @, then eqns
{12) and (13) become:

G, =0. G,0.=0, (38)

u e(d) (‘:td)l N - ‘v s
(t') N z“(a,m:)””(ﬁ,m:)’ V= EnmaSTVR R T )

As in the previous case, to reduce (38) to applicable differential equations, the tran-
scendental differential operator in (38) must be replaced by an infinite number of simply
algebraic operators associated with the eigenvalues of G, (i.e. transform G into a production
of infinite number of prime factors). The eigenvalues of G, can be found by solving the
equation

Gy(4) =0, (40)

which is yielded by substituting V- by 4° in G,. The differential operator corresponding to
an individual eigenvalue 4 then becomes Vi— 7,

For general transversely tsotropic materials, it is difficult to determine the distribution
of roots of Gu(4) = 0. Howcever, it becomes a relatively easy task when only isotropic
materiads are considered. In this case, the equations for @, and @, have the form

('+sind ® =0 4l
Vi - @
and (40) becomes

sin 4

"o, (@2)

A similar equation, i.e. sin A/A—1 = 0, has been discovered for plate problems of isotropic
materials by Cheng (1979), and its root distribution and other properties have been studied
by Hillman and Salzer (1943).

Appendix B gives the root analysis for eqn (42). The result indicates that (42) has an
(countable) infinite number of pure complex roots, and the large roots (4, = ¢, +jb,. j =
\/’— 1) have the asymptotic formulation for large n as

2 1n {(4n—
a, = (2n-Hn— 2in{(n =izl . by = In{(4n—~1)n]. (43)
dn—Hn

The differential equations associated with root (cigenvalue) 2, are
Vb, = ijd,, Vd, =i, (44)

the corresponding mid-planc displacements are

iy < g ‘:n ‘fn . n 8x(bln én q’n . 5:1 8t(bl'n «
=4 - gos I —sin 3 —~lpcos = + --sin - . Ea=A0
(z',,) " (41 2 3 ) (am,n RES T 433 e, ) T "

I

N Sn én .
W, = —-z.,,(‘i; cos 3 + sin -

L

T)«D., +4] (cos 3.;’ + S:—;sin i")ﬂ):m (45)

1a!
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and stresses and stress resultants can be found easily using (44) and (45). Note that paired
conjugated roots must be used together in order to arrive at real-valued displacements and
stresses. Thus only even numbered edge boundary conditions may be specified when the
solution of (44) is applied alone. as has been pointed out by Cheng (1979) for plate
problems.

Combining the biharmonic solution, the stretching solution and the transcendental
solution just described. an infinite number of boundary conditions at the edges of planes
can be satistied. Therefore. when the boundary conditions of a general three-dimensional
problem (i.e. a general three-dimensional svmmetrical deformation problem) can be
described by an infinite number of two-dimensional terms, its solution can be approximated
by the combination of those basic solutions. Some relevant discussion about this problem
can be found in Cheng (1977).

4. APPROXIMATE PLANE EQUATIONS FOR NONHOMOGENEOUS BOUNDARY CONDITIONS

For nonhomogencous boundury conditions, we first discuss the most general loading
condition at the two surfaces = = +4/2, and then consider two special cases of boundary
conditions, that is. normal surface loads only and shear surface loads only. As in the
previous section, we only present the approximate governing equations and the approximate
expressions for displacements and stresses. Issucs related with the corresponding boundary
conditions at edges will not be investigated here.

4.1, General boundary condition at the two surfaces 7 = +h/2

In this case all the three load terms p. g, and g, are applied on the two surfaces. The
governing cquations for mid-plane displacements and rotation can be obtained from (10)
by approximating all the differential operators up to second-order terms with respect to the
thickness r. The result is the following :

B o ) - o, _ P
(I+8(I-—2)V (Que+C ey + L p+ SV t;’/-AH.
7 =B B =)+l o
_1“(| _ Al VE)V%H» [“11/ _ B =gl +pe g /!‘V‘:!?\(("Jl-!-l’\.l‘)

24 Wy
l"'1 l""'z:_”/f 3 ~ 2‘/\\
Y A R 7R V2 ) P Y S
( x + 2327 4 Y Ayggh

v =f B —pf)+px’a :
2 RE LT 24

s |- . 2, N\,
S /rV“](‘r(ﬂ\u-H;r)—-ac(,-(l— o V')V‘z'—-

R R ] 2.,
T e Y o = T (46
( 2 + 242 ' )‘ 4 A (46)

The approximate expressions for three-dimensional displacements are obtained from
(1) by considering opcrators up to second-order terms with respect to =. We get

U 2,27 YL ot ‘e c Y
(7)- (= w) () lmmem () -conmnen(G))

W= of. (47)



Theories for transversely isotropic body—I1 71

Similarly, from (3). (4) and (6). we can show that
vdilo, = {uﬁ + i-; [BO = up)V? =2apx;(xx; — ﬂ)(}.,]}(&u +a,.0)

- Zx;txU(I - Z%:— V:>(’.r+ {,u(l —2)+ ,;—1 (1 =2 —up)v- —21;11(,«5_..“]}111.

.

vAL e, = {u/ﬂ- %[[i(l —up)v: —21;110(11(;—/)’)(’”]}(0,,11-{»6, r)—

21;11(;(1 — X%:»—V:)F‘u-i- {;z(l —1)+ ;—1 (1 =27 —pf)V7 = 2apua,;c,, }l]/.

aél = (l - 1'—_,: V:>((’\l'+(’,.u)+ 5;(’“.[(11(;—[3)(("1(+(“.1‘)—l//]. (48)

Combining (5). (7) and (8) with (46). we have:
a.. P e Ao B
- _ IR (vA p) D) —i |,
A 2(4 ) |:l—-oc((‘“+(‘l) v
a.. 22(q.. G s K :_ s f
(m) T b (q.)~ 6 '(4 T >V [“"’V <,)

81— )0 QL —pfi—a’
_pa /‘/‘)f/‘(n"),, (l NONTE .1))+ lﬂ/‘“ (‘7‘¢>:|. (49)

pna” O, (S u+dr) pa” o

Equations (49) show that all the boundary conditions at the two surfaces are completely
satisfied.

Another approach to develop approximate equitions in this case is to usc egns (12)
and (13). However, we will not discuss this approach since we can show later that such a
result is simply the superposition of results from the cases in 4.2 and 4.3 below.

4.2, Two surfuces subject to normal loads only

A typical case for such loading is a dam with constant width & pressured by water.
Since X, = X, =0 in this case, we can set @, =®, =0 in (13). Let ® = —s VSN, :
eqns (12) and (13) then can be rewritten as

VG,b = — :* Cu=Sui D, e =500, ¢ = V(E0s—auSN)D.

13
Expanding G, up to the fourth order with respect to =, we get
Go = —22:(1 +2,2°VY), z=h2

where

l+2x—pup
Ay = - -
" 62
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Therefore. the approximate governing equation for @ is {replacing A0 2 by ®)
. 1h” . .

and the approximate mid-plane displucements and rotation are
l—x {6, D\ -2 o1 0P 3 | ‘
(u) _ -z (. )+ : #ﬂh_ ) (i P ) o= / [; e e ‘,f’_‘w‘
v 1\, 242 p 2oy \Cop, 2 244u e,

From (1), the approximate three-dimensional displacements are

U\ t—xfe®\ I [1-2*—pup |, ) ! ( ,p)
= A A S L 52
(V) x (a,w)*za( Ban 1 i e )

Combining (3)-(8) with (50}, we find the approximate stresses as

3

" p(n . h A
i = 21— AP o 2t e B S 17 M T RS- il 'L .
J” (1 —x)pa, 0,4 +{ 3 v: m( (I -2 ﬂ‘“fl 2 -2z k0, A

Ty { h 2 2 ‘ 2 e
“ = (] — A 2o el _ -2 1
AL 200 —x)pgd “‘b+{ (I"’ : )\7 22, {(l x? ;4/3 w2 ~2): } “}A .

Y : - i b e { 3 L3 Y N
T ( g)gwd)v}- { “ Tk I {1 —ﬁ}*{f}:‘}‘ P
o 6}1’1

G 2, “a
e ) :]
f’.-:—[l*'ﬂ((4 -2 IV ip.,
a.. C-ml—ph) -ﬁt' (112 ,) ,(D‘p‘)
= P V2 _ 3
(al,._.) 6ay(1 «-aw;z/f) b= 4 v 4., (33)

Again, the boundury conditions at the two surfuces are satistied completely. The last
equation in (53) indicates that stresses o.., 7, and a., arc caused totally by the normal
surface load p,.

4.3. Two surfuces suhject to shear loads only

Since X', = 0 in this case, we can set @, = 0 in (13) and rewrite @, and @, as ®, and
®,. After some quite tedious calculation, the approximite governing equations for @, and
¢, can be found to be

. 2ol \ G . aph® _ \ g,
- e =, X I A A )
V(D,A«(l 3 V)C 0, Vo +(l 3 >C 0 (54)
where
Xes X G/l
Lp = Ay — (; and C = f(»iw
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The approximate mid-plane displacements and rotation in terms of ®, and @, are

(4)- R uq w()- £ (=)
% R L au)TEY o, ) "M% e\, )"

v _ 2(1-2) =38 h*
o ViH+ 6(i—z) ac?’

(55

where p = ¢.q4,,+ 4.
The three-dimensional displacements are approximated by

U O, ays vy [ O H
<;'> = ch‘(q}r)—l{“x« —agh V- —2u{*xﬂu-%(Huﬁ)lz“v'}(aﬁ)

—Z‘”(dc" — 2z )(q,.,)

W=z, (56)

and finally. the approximate stresses are described by

Gn 3 a ‘u; -
X o= = 2222V D e[ (2 (1~ 1) —afp) V- 4 2o 2,0, ] H - {2-—3 faagh®
13
R ez | el
+ 20— 2 (V4 2x —px)2 VIO H + Gh “ Ay h? =23,200 s+ daC [w-%ih"

+2((afip = 2) (L= 1) + 1‘;23):3] p.

T

2 2Ly 3
'A l; = = apa,1 VOO, + pul(2, (1 = 2) — i)V + 222, 2,0 | H — IAZ(— {aa,h”

. A% 1| axenl
+2{afip— 2 (| +axy —px?)]2? V2 (HII+ bGl“ Yy = 22,27)0 et 4—C[ ~56~3h

+2((2fip =) (1 -ﬂﬂ)*‘d(;“:):z]["
o, |
o= 22,0 H+ 2V D, + 4, <b,,)+ {aagh + [afu = 2 (1 =22z, + p?)]2?

x V3 H— :—2—,(1,,113 =2ua;27)p,

_x(l=a)+apu [ Cy ,
B A% 2 a~\n) "
(U ) 3:{[ 2 (hz ) . ((1 ) (26 + 2B) (1 —pp) — 2 (1 + 2gacp)
- ‘ —-— - - V" e o . e e
g,. h 6 \4 G bux-agxe

B \(dp
(E-)e) o

Once more, the boundary conditions at the two surfaces are satisfied completely and
the stresses 0., 0., and 0., arc caused totally by the shear surface loads.
The stress resultants in the above three cases can be found easily.
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To verify the statement we made at the end of case 4.1, substituting mid-plane dis-
placements and rotation of (51) and (55) into (47)-(49) and neglecting the higher-order
terms. we find that the result obtained in this way is indeed the superposition of (52)-(53)
and (56)-(57). However, for the general boundary condition (case 4.1), there does exist a
higher-order term difference between the solution by solving (46)-(49) and that by super-
posing the results of the cases in 4.2 and 4.3. Obviously. it is more convenient and preferred
to solve the general surface boundary condition by dealing with the cuses in 4.2 and 4.3
separately.

5. CONCLUSION AND FUTURE RESEARCH

Without using any ad hoc assumptions. we have deduced various two-dimensional
exact and approximate equations for the plane problems systematically and directly from
the three-dimensional theory of transversely isotropic bodies. These equations are very
uscful in developing new refined theories for the plune problems. Note the plane problem
defined here is a generalization of the plane stress problem studied in classical two-dimen-
stonal elasticity for isotropic materials, where only homogeneous boundary conditions at
the two surfaces are considered. In the case of homogencous boundary conditions, the
equations obtained for the plane problems in this paper are exact ones in the sense that a
solution of them will satisfy all the balunce equations of the three-dimensional theory.
Especially. the distribution of stresses described by the biharmonic solution is the same as
that of stresses in the classical plane stress problem (i.c. both haveo.. =a. =g, = 0). In
the case of nonhomogencous boundary conditions, the approximate cquations are accurate
up to the second-order terms with respect to plane thickness, Without considering the
higher-order terms, stresses .., o, and .. deseribed by the approximate equations are
totally due to the external surfuce loads. Those results obtuined for stresses a.., o, and ..,
indicute the correctness of the stress assumption (a.. = o, = a.. = () in the classical plane
stress problem.

In the plate problems the equations of the refined theories have the same form as that
ol other well-known classical plate theories. This property is very helpful to show the
validity of the new theories. For the plane problems, however, no direct comparison on the
form ol equations can be made since the unknown function in the classical plane problem
is the stress function, while the unknowns in the refined theories would be displacement
functions. Therefore, further reseirch is required to verify the new plune equations. One of
the most important issues to be investigated is the specilication of boundary conditions at
the edges of planes. These boundiry conditions have to be specitied in terms of the stress
resultants (N, N, N, and 7., T,,) or some combinations of mid-plane displacements
and rotation (u, ¢ and ). Even though the stress resultants 7. and T, defined here huve
not been widely (perhaps never) used before, the correspondence between (N, N, V...
T.Toand (M, M, M., V.. V., inplate theory indicates they are important physical
quantities and more understanding about them is needed.

Another aspect of future research is to apply the established equations to some specific
problems. especially the fracture problem and stress concentration problem, and compare
the results obtained with those by both the classical two-dimensional approximate theory
and the three-dimensional exact theory.
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APPENDIX A: CONSTITUTIVE EQUATIONS. MATERIAL COEFFICIENTS AND
DIFFERENTIAL OPERATORS

AL, Constitutive equations

0., Ay Ay AU
o, )=14. A, Al
a. Ay A Aq\ew
0. = AL W+3.U) 0, = A WHEV) 0, = A, (¢, U+E 1), where A, = (A, —A,.)2.

A.2. Some coefficients

1=VA“ § = Ay - Ay ‘_A_n
A+ Ay Aoty TT AL FA, M T e
. ode B Ty -1
si= 0 .v;:=Bt\/r'-{f. B=?+,/’ .
Aaa 7 <Xy
Forisotropic materials: x = 1 =2v, f =y = 2(1 =v), 5 = (l-v)v.
A3 Busic differential operators
sin (s, V2) -85V, 1-CS,
SV, = — . S, = cos (s, V: SS, = ! T e =
, W CS, =cos(5,V2), SS, I CC, TR =012
S'SS, ~s¥SS, sCC, -5t e,
QZ.""I ' ".: R ¢ 5 -‘-\IC(: ‘I((". (=0,1,2.3,
RN & RHER
whens, = 1Ly, =1, 5, = 1:
sin V: sin Vz
:- -- zcos Vz -~ ﬂ"v | v .
Qi) N TV ey e Ve zsin
W=D g =y v e Tl Uk Rt R

A Some differential relationships
&SN, = (€S, 0.CS, = —5'VISN,, 0.8, =CC,, 3.CC,=5SN,, i=0102.

0.0, = Q.

NP | R s , ) z
oL, = l-v-<n,-,— I—Q,“), 0L, = siSN,— ’~:+v~</—’n;— /.‘Q,',). oL, =2 - lyg:
2 2 2 7 ; a a

i
&Ly, = Il;—' Vi QL ~ (2 + ) + 2400

A.S. Cofactors D,

D., = —A\“:,SAV,,V:.‘:H(W_, D,: = —.\‘.!,SNuV!En"... Dn =.s':;SN.,V‘(A\'.:;SN.,-—Z:;).
D,

.\'.",.S'N.,Vlﬁ,|+(E,,£”—X,,Z:;)ﬂ_,. Dy = —(X,2,,-Z,.Z,,)4,,. Dy = sE:S:V‘,V:S..L’,.
Dy =—(£,2,-Z, 2,90, Dy = .\‘S.S'N(,V:f,,+(E,,Z“-—.‘:,|Zz_-)(7". D, = St':SNuV:Euav-

APPENDIX B: ROOTS OF sind/i+1 =0
First, it is casy to show that equation
sini/A+1 =0 (B1)

has no pure real or imaginary roots.
Let x = a+jh be a complex rool, @ and b be real numbers. Then +a +jb are roots too. Therefore we only
need to consider the region {¢ > 0, 5 > 0}. Substituting x into (B1), we get

i sh(h)+a =0
{sm(a)cm (h)+a (B2)

cos(a)sinh(h)+H = 0.

SAS 28:2-p
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16 po—
14F
o=l
12¢

10F

gh E=sin[ sh-—"-—-(b)) bach ' (L®)

Fig. Bl(a). Determination of root for n = 1.

n=100

b=ch (L&)

Q 005 0.1 015 02 025 03 035 04 0.:5 0.5

Fig. BI(b). Determination of root for n = 100.

B.1. Countability of roots
Clearly. eqn (B2) may have real roots only when sin («) < 0 and cos (¢) < 0. Hence o must satisfy

(n-lpm<a<n-4YYn, n=12...,

therefore

a=Q2n~-Yn~% 0<i<.. {B3)

Substitute a into (B2),

cos (&) cosh (b} = (2n = Y)n =&
(B4)

sin (&) sinh (h) = h.
Define

and  x,(3) = sin (&) £,(E),

then from (B4)

which may have positive real roots only when x,(8) > 1.
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Let &} be the root of the equation

cos (3)
sin ()

yn— <i<

i

= (-~

e
to1 A

then &7 is uniquely defined for any n > L. It can be shown easily that £,() is a decreasing function of ¢ when
0

0 < & < &), and an increasing function when &, < & < (r.2):and that x,{3) € t when0 < € 5. 2,(3) > | when
3 < & < (n'2). Therefore, for any n in (B3)

L<ic< § (85)
However, from (B4).
b
% o gin !
s =sn [sinh(h)] 180
b = cosh™ ' [/,(]. (B7)

(B6) indicates that ¢ is a decreasing function of A for 0 < b < =, and (B7) indicates that b is an increasing
function of & for &) < & < {n/2). Also. from (B6) and (B7)

i
)

when b-+0 and h—x when &—

3 7
rdi A

Therefore, for any given 2 there exists one and only one & which satisfies (B3) and oune and only onc » which
sitisties (B2). This proves that (Bl) has countable infinite number of roots. For a given n, we will write the
correspondding a. b and § as a,. b, and §,. Figure Bl(a) and (b) depict eqns (B6) and (B7) forn = Land n = 100,
respectively.

B.2. Asymprotic distribution of roots

It is not difficult to give a ngorous analysis for the asymptotic distribution of roots, but here we will use a
rather simple method to determine the asymptotic formulation for lurge roots,

Fram (BY), ¢, — x when # ~ o, therefore by (B2) and (B6). A, — « and &, — 0. Since

- )

L ; . < . ¢
sin{é,) ~ &, when §, =0 and cosh(h,) - B st (b)) - o when b, -«

it follows from (B3),

2ln{tdn—tin|

b, =In{(dn~Dn] and &, — O

when - o (BR)

which give the asymptotic formulation for large roots.



