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Abslract-Various two-dimensional equations for plane problems have been deduced systematically
and directly from the lhree-dimensionaltheory of transversely isotropic bodies without any (ld hlle
assumptions. These equations can be used to construct new relined theones for the plane problems.
In the case of hl1mogeneous boundary conditions. the equations obtained arc exact in the sense th,lt
a solution of them will satisfy all the balance equations of the thrl'C·dimensional theory. In the case
of nonhomogeneous boundary conditions. the approximate equations arc accurate up 10 the secllnd
order terms with respect to plane thickness. The results of this p,lper also verify the stress assumption
in the classical plane stress problem.

I. INTRODUCTION

This paper presents the second part of my research on deducing two-dimension.1I theories
from three-dimensional theory for a transversely isotropic hody. We have shown in the first
part (Wang. 19X9a) that the general deformation of a transversely isotropic hody can be
decomposed into two parts: the anti-symmetric defonnation and the symmetric defor
mation. The two-dimensional prohlems associated with the two types of deformation have
heen called platl: and plane prohlems. respectively. With the lirst part of this research
focusing on the plate problems. we will investigate the plane problems in this paper.

The method used to deduce the two-dimensional theories from three-dimensional
theory directly was originally introducl:d by Cheng (1979) for the development of relined
plate theories. The new results obtained by Wang (1985. 1989a.b.c) and by Barrett and
Ellis (1988) have indicated that application of Cheng's method in plate theory is quite
successful. A more general procedure of deriving approximate lower-dimensional theories
from a higher-dimensional theory with the aid of symholic computation has been proposed
by Wang (l98ge).

Unlike the plate problems. the equations of classical two-dim<:nsional plane problems
for isotropic materials are well developed in theory and widely used for various engineering
problems. The successful application of the classical plane theory makes it seem unnecessary
to establish any refined theories. as have been proposed for c1assic.tl plate theory. Conse
quently. any attempt to suggest a new plane th<:ory may result in some controversial (or.
hopefully. significant) issues and effort toward this has h;lrdly been found in the literature.
As the first step toward refined plane theories. we will concentrate only on two topics in
this paper: (i) to derive new and exact two-dimensional equations directly from the three
dimensional theory for the classical plane problems: and (ii) to generalize the classical plane
problems by allowing nonhomogeneous boundary conditions at the top and bottom surfaces
of pl'lIles and then give the corresponding two-dimension'll approximate equations. It is
not our purpose to develop a complete relined theory for plane problems here. Some
important issues for a complete refined theory. such as the specification of boundary
conditions at edges. arc open for future resenrch.

Section 2 gives the exact two-dimensional plane equ.ltions of infinite order for trans
versely isotropic bodies. These equations will serve as the basis for the derivation of the
finite order two-dimensional plane equations later. Sections 3 and 4 present the major
results of this paper: the exact plane equations for homogeneous boundary conditions and
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the approximate plane equations for nonhomogeneous boundary conditions. Finally. we
summarize the papa and discuss some issues for future research in Section 5.

~ EXACT TWO-DI\IENSIO:\\l PLA:\E EQUATIONS FOR A TRANSVERSEL Y ISOTROPIC
BODY

Let us consider a linear and transversely isotropic elastic body occupying a domain of
nx [h2 ~: ~ -h 2: in a rectangular coordinate system (x.I".:). where the X-I" plane
is the plane of isotropy and n is an arbitrary region on it. Let C. V and W be three
dimensional displacements of the transversely isotropic clastic body in the x. y and: direc
tions. respectively. Since this paper is to deal with the plane problems. we will only consida
the symmetric deformation of the transversely isotropic body caused by a set of symmetric
surt~lce loads with respect to the x-y plane.

According to Wang (1989a). the three-dimensional displacements U, Vand W in this
case can be represented in terms of the mid-plane displacements II, I' and rotation'" as

U = CS"II+i"',L,,(I',II+I\I')-I',L1'iAI, V = CSII I'+I\L"(i',1I+i' .. I')-I\L 1,,,1/;.

W= 1.",1/;-1.:,,(1\11+1',1'). (I)

where

and thc difli.:relltial opcrators Me dclined to he

t( )
i\( ) = _

Iy
, ., II I II"

/." == .\',i( ( ,,'- u" + n".
1 "I

V'( , II I)LoP = : - - U:, - u" .
1 /

The CllelJicients1.IJ, ,'and the ditl"crential operators CS,. :'iN,. ,",',",',. Ce" n:.. n~, arc given
in Appendix A, Note that the difli.:rential operators must be interpreted as representing
series in powers of operators (.I',V)~,

When a transversely isotropic body reduces to an isotropic body. the differential
operators L". I.:,,. L,,, and L lv in (I) become

L" =
: sin V:

21 V
1 ( sin V:)

L:" = ~1 :cos V:- V '
sin V:

Lof- = V - L:", 1. 10/1 = -L,,;

and expression (I) reduces to the form

(U) _.. __(II) I: sin V: (<,.',.e)- I.:OS V - ....
J' . - I' 11 V 1', e

sin V: I ( sin V:)
II' = V '" - 21 : cos V: - V e, (2)

where e = i\1I +i\1' + Ip, :x = 1-21' and I' is Poisson's wtio,
The corresponding stresses follow from constitutive equations (sec Appendix A):
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I ' ''l'' - L ](' - "l ~CS ~i'AI.IO'" = [Jl{3(CSo+V-L")-_lj.lSjjC,,L.-i'C: ~"c,u+c,r)-_lIlSo o(,U

- (j.lf3V~ L I,. - i'(\L", - 21IlS~{\,L Il/I)t/J. (4)

The symmetric surface loading conditions on the two surfaces == -II 2 and 11/2 can
be specified as:

O",,(x. y. 11(2) = (',(x. y). O'::(x. y. -11/2) = (',(x. .1').

a c(x. y. 1112) = If ,,(x. y). 0" ,:lx, y. - 11/2) = -If ,,(x• .1').

O",,{.\". y. 11/2) = If.,(x. y). O',:(x. y, -11/2) = -If,,(x. y); (9)

which lead to the following system of linear differential equations for the mid-plane dis
placements and rotation (11.1', Ip):

== 11/2,

(10)

where

1: 11 = CSo+V~L"-JU\L~,,. 1: 1) = V 2L I",-Ju1,L",. 1:~~ = iJ:LIt-L~It.

1:'1 = (\L I", -L",. == 11/2. ( II)

Equations (10) n:pn:sent the exact two-dimensional equations of the plane problems for
a transversely isotropic clastic body. Obviously. when applying the homogeneous boundary
conditions. we obtain the exact equations for the plane stress problem in classical two
dimensional elasticity (Timoshenko and Goodier. 1969), To consider the plane strain
problem. we have to use the symmetric surf~lce displacement or strain conditions (Wang.
19lNd).

However. in general. these equations arc not applicable since they arc ofinlinite order.
To develop a set of pral:til:al governing equations of finite order for the plane problems. we
will study the general solution of (10) first.

Let 1J
"

be the determinant and D" (given in Appendix A) be the cofal:tors of the
dilferential operator matrix in (10). The general solution of (\0) l:an be expressed as (Wang
\9S9a)

/I = I D,I C(),.

,- I

,I

r = I D,~«(l,.
, • I

J

t/J = I D,\C(),;
I 'OS I

( 12)

the values of c(), satisfying the ditTerential equations

(I J)
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After some tedious algebraic manipulation. the determinant D p is found to be

(l-H

where

For an isotropic elastic body. Go becomes

Gu = !~ (I + sin V/~).
2v vii

( 15)

( 16)

As in Wang (l9S9a) for the plate problem. we will investigate solutions (12) and
(13) in the following two sections for the Cases of homogeneous boundary condition and
nonhomogeneous boundary conditions. respectively .

.'. THE E.'<,KT I'L,\;\;E EQUATIONS FOR IJOMOGENEOUS BOUNDARY CO;\;DITIONS

The classical plane prookms consider only homogeneous boundary conditions (i.e.
p, == l{" = l{" == 0). In this case. corresponding to the three coprime factors of the deler
minant Df •• the general solutions or eqn (13) arc the sum of the general solutions of the
following governing dilli:renti;tl equations:

sin (.I',V.::)
\7 <I', = O.

St V
Go(I', == O. .:: == Ii/2.

We now discuss these three equations in detail and show how new plane theories could he
established based on them.

3.1. lJilwl'f/uJflic equation and hilwrmollic solution
Since the solution corresponding to (1'\ is a spedal case of the solution given by (1'1 or

<11 10 we can set (1'1 = O. Thus. el.jns (12) and (13) lead to:

V4«(>2 = 0, \74$.1 == O.

Ii = D 11 (I'2+[).1I«()). L' = D21«()2+D.12<(>.10 l/J = D23<(>2+D3J$3'

By replacing «1'211)/2 and «1'111)/2 with <1'/1 and <(),.. respectively, we can find that:

(17)

(I X)

( 19)

where

If = t,<I'" +(',,(1',.
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and G and G' are the shear modulus in the plane of isotropy and perpendicular to it.
respectively.

From eqn (I). the total displacements can be found to be

W=:l/!.

The normal stresses and shear stresses can be found to be

iA ,-,' au = {1lt1 + ~(j1( I - tL{J)V~ - 2:xtL:Xc;(:X:XG - fJh".] }«(\II+c,r) - 2:xtL:XG( 1- :x(,;~ V~}\r

+ {tL( I -:x) + ~: [(I -:x~ -IL{J)V! - 2:XIL:X(;(\,] }l/! + I~~V{ :xc;( I +:x -ILfJ)C" «\11 + err)

(
I-IX 1-J.LfJ-IX!,,)

x c7,.(i:\u+D,L') -: --- + --6. ,--- :-V- cJ.vl/!·
. a: tl:X-

(20)

Substituting (17)-( 19) into the expressions for the total displacements and stresses, we
obtain the following results:

(U) [ Iz! ( (=)!) ,](O.H) ,(<I>u)V = - :X.,- 4" 1X8-2:x<; h V- oyH +lXcV - <1>,.• (21 )
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(22)

(23)

(24)

Define the stress resultant to be

(25)

(26)

I f" ~(N". N,.,.• N",) := I (11 ".11,.,.• 11 ,,) d;.
I -It 1

then

(28)

(29)

T,: = T,: = O.

(30)

(31 )

Equations (17)-(19) and (21)-(31) form the biharmonic (plane) equation system and
its solution is called the biharmonic (plane) solution. Equations (23)-(26) indicate that the
distribution of stresses in the biharmonic solution here is the same as that of the stresses in
the plane stress problem in the classical two-dimensiomll elasticity. i.e. both have
(1:: = (1,: = (1,.: =O. However. the plane stresses in the biharmonic solution also have the
additional seCond-order terms (;2 terms) which change along the thickness of planes unless
7.(; = o.

There are three major differences between the bihurmonic solution and the solution of
the classical plane stress problem. Firstly. the biharmonic solution is described in terms of
displacement functions. and stresses in this solution arc determined by differentiating the
displacement functions. However. the solution of the classical pl<me stress problem is
described in terms of stress functions. und displacements ure derived by integrating the
stress function. Usually. there are difficulties involved in this integrating process. especiully
in determining the integration constants. Secondly. there are two independent displacement
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functions in the biharmonic solution and only one stress function in the classical plane
stress problem. However. since stresses in the biharmonic solution involve only the third
or higher-order derivatives of the displacement functions. while the stresses in the classical
problem involve only the second-order derivatives of the stress function. both the bihar
monic solution and the classical problem will need the same number of boundary conditions.
Thirdly. the biharmonic solution satisfies all the basic equations of three-dimensional
elasticity. except the three-dimensional boundary conditions. However. it is well known
that the solution of the classical plane stress problem does not satisfy the three-dimensional
compatible equations as well as the boundary conditions. To satisfy the three-dimensional
comp;:ltible equations. the higher-order terms (=~ terms) have to be included in the stress
function (Timoshenko and Goodier. 1969). Note that by using the displacement functions.
the compatible e4uations arc automatically satisfied in the biharmonic solution.

Based on the above obsl:rvation. WI: consider the biharmonic solution as the/ir.H-arder
theory of plane stress problems for transversely isotropic materials.

3.2. Strcrdlin." C(fill/tion and srrcrdlin.ll solution
It is easy to see that in this case the solution from <1> \ is zero and the solution from <1> J

can be reduced to that from (ll~. Therefore. we set (11, = '1>, = O. Equations (12) and (13)
now lead to «II = (II:)

(32)

The transcendental dilli:rential elill (32) call be n:placed by the f~)lIl)wing infinite
/Ill/llber of simply algebraic dilli:rential equ~ltions

n = 1.2.",

Let I"uo(;tion Q" be

then

[ , ('2l17t)!J
V- - ,1',,1z Q" = o.

The deformation corn:sronding to Q" is giwn by

11 = 1.2•.. , (33)

and

II" = (\Q". /'" = -'\Q". 1/1" = 0; (34)

(2mc=)
U" = cos Iz (\Q". (2mc=)

V" = -cos --Iz '\Q". IV" =0. (35)

The norm~d str(;sscs and shear stresses can be found to be

_ ,'2mc .' (2I17r=),
""" - - G l~ sll1 h -- ,.Q". (36)
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The stress resultants are
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N'<n = N,.," = N,," = O. T:-," = (-I )"G'2, Q". T:," = - (- I )"G'C,Q". (37)

The physical significance of the deformation described by (35) is very clear. Firstly. a
plane parallel to the middle plane of the body slides in the same plane and hence still
remains parallel. and planes at equal distances above and below the middle plane slide with
the same displacements in the same directions. Therefore. overall. the body is subject to a
stretching deformation. We call eqn (33) a stretching equation and the corresponding
solution a stretching solution. Secondly. for a given n. the overall stretching deformation is
composed of 2n layers of shear deformations. These shear deformation layers divide the
thickness of the body equally into 2n slices.

{
k 2.: k+ II }
,~~ k ~ _.;-' k = -no -11+ I. .... -1.0.1. .... n-I .

The middle plane of the kth shear layer.

(k + j)h
211

is subject to no deformation (U = V = W = 0), and the two planes within the kth shear
layer above and below the middle plane or the layer with equal distance slide with the same
displacements but in opposite directions. Note that two adjacent shear layers arc the
ret1eetion of each otht:r with respect to their cornman boundary surl;lce (Fig. I).

For each II = 1.2..... the solution (33) (37) can be considered as an individual term
in the Fourier series expansion of the stretching deformation. Similar to what we have done
for plate problems (Wang. 1989a). ;1 refilled .vc'('o/UI-order plalle theory for the derormation
of transversely isotropic bodies can be established by considering only the leading term
II = I in eqns (33) (37) and combining this term with the biharmonic solution (17)(31).
A solution or the relined plane theory will satisfy all threc-dilllensional equilibrium equations
for transversely isotropic bodies except the boundary conditions. The boundary conditions
in this theory should be described in terms of the stress resultants or some combination or
mid-plane displacements and rotation. instead or the stress or displacement distributions
over the thickness -!Il2 ~ .: ~ h/2. Three boundary conditions at each edge of a plane can
be prescribed in the relined theory. We will not discuss the problem of boundary condition
here in detail.

Z

Z-(k+l)h!2n

Z-(k+O.5Jh!2n

Z-kh/2n

Fig. I. Th<: klh sh<:(Ir d<:form(llion I(ly<:r ddin<:d by Ih<: str<:t<:hing solution.
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3.3. The third equution and transcendental solution
It is easy to see that the solution from <I»} can be deduced from the solution from <I»!.

Hence we set <I»} = 0 and replace -s~SNoV!<I», and -s~SNo<l»! by <1», and <I»!. then eqns
(12) and (13) become:

(38)

(39)

As in the previolls case. to reduce (38) to applicable differential equations. the tran
scendental differential operator in (38) must be replaced by an infinite number of simply
algebraic operators associated with the eigenvalues of Go (i.e. transform Go into a production
of intlnite number of prime factors). The eigenvalues of Gil can be found by solving the
equation

GnU.) = O. (40)

which is yielded by substituting V! by i.! in Go. The differential operator corresponding to
an individual eigenvalue i. then becomes V! - i.!.

For general transversely isotropic materials. it is difficult to determine the distribution
of roots of GIlO.) = O. However. it becomes a rdatively easy task when only isotropic
materials arc considered. In this case. thc eljuations for (Ill and <I>! have thc form

and (40) becomes

(
sin VII)I + (II = 0VII •

sin i.
"-.--- + I = O.

I.

(41 )

(42)

A similar cquation. i.e. sin i.1i. - I = O. has been discovered for pl'lte problems of isotropic
mah.:rials by Cheng (1979). und its root distribution and other properties have been studied
by Hillman and Salzer (1943).

Appendix B gives the root analysis for eqn (42). The result indicates that (42) has an
(countable) inlinite number of pure complex roots. and the large roots 0.. = an +jhn • j =
J - I ) have the asymptotic formulation for large II as

I 21n[(411-1)1[J
a .... (211 - ,)1t - .._.00 .•.• _ h .... In [(4,,- I)tr].

" • (4n-1)1t' n

The differential equations associated with root (eigenvalue) i.n are

the corresponding mid-plane displacements arc

,I. • (~. ~. . ~.) I> . ,( ~. ~.. ~n)(1)
Il'n = -I.• 4; cos 2 + Sill 2' ( 1.+ 1.; cos 2' + 4v sm '2 !no

(43)

(44)

(45)
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and stresses and stress resultants can be found easily using (44) and (45). Note that paired
conjugated roots must be used together in order to arrive at real-valued displacements and
stresses. Thus only even numbered edge boundary conditions may be specified when the
solution of (44) is applied alone. as has been pointed out by Cheng (1979) for plate
problems.

Combining the biharmonic solution. the stretching solution and the transcendental
solution just described. an infinite number of boundary conditions at the edges of planes
can be satisfied. Therefore. when the boundary conditions of a general three-dimensional
probkm (i.e. a general three-dimensional symmetrical deformation problem) can be
described by an infinite number of two-dimensional terms. its solution can be approximated
by the combination of those basic solutions. Some relevant discussion about this problem
can be found in Cheng (1977).

4. APPROXIMATE PLA:-.IE EQUATlO:-.lS FOR :-.IO;';UOI\IOGENEOl'S BOUNDARY CONDITiONS

For nonhomogeneous bound'lry conditions. we tirst discuss the most general loading
condition at the two surt~lces :: = ±h' 2. and then consider two special cases of boundary
conditions. that is. normal surl~lce loads only and shear surface loads only. As in the
previous section. we only present the approximate governing equations and the approximate
expressions for displacemenls and stresses. Issues related with the corresponding boundary
conditions at edges will not be investigated here.

4.1. Gel/eral hlllmdary ('ollditio" at tlte tl\'O sur/IICes z = ± h/Z
In Ihis C.lse allihe Ihree load lerms {I,. If" and ti" are applied on the two surfaces. The

governing equations lix mid-plane displacements and rotation can be obtained from (10)
by approximating all the difkrential operatllrs up to second-order terms with respect to the
thickness It. The result is the following:

(
1$1t~ ,) _ ( 1t 2

,) {I,
I+ V· (il,u+c,d+ /l+ V- 1/1 = .

g(I-:x) g Ail

The approximate expressions for three-dimensio04l1 displacements arc obtained from
(I) by considering operators up to second-order terms with respect to :. We get

(47)
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Similarly. from (3). (4) and (6), we can show that

17t

Comhining (5), (7) and (8) with (46), we have:

(48)

(f"

..1 1 \

f', I (It~ ,).[ II ]
A I \ - 2 4 -:- V' I _~ (1\11+1\1') -!{J ,

Eq uations (4lJ) show that all the boundary conditions at the two surfaces an.: completely
satisfied.

Anotha approach to develop approximate equations in this case is to use eqns (12)
and (13). However. we will not discuss this approach since we can show later that such a
result is simply the superposition of results from the cases in 4.2 and 4.3 below.

4.2. 1'11'0 slIr}(/('£,s slIhjl'c( (II norlllalloads unly
A typical case for such loading is a dam with constant width h pressured by water.

Since X ~ = X J = 0 in this case, we can set (I)~ = (Ill = 0 in (13). Let (I> = -,\'~V~SNn(1) I ;

cqns (12) and (13) then can be rewritten as

Expanding Gil up to the fourth order with respect to :, we get

where
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Therefore. the approximate governing equation for $ is (replacing M> 1 by $)

(50)

and the approximate mid-plane displacements and rotation are

(51 )

From (I). the approximate three-dimensional displacements are

Combining (3)-{8) with (50). we find the approximate stresses as

[ It (II! .) 'J":: = I -
'l7

c 4 -:- v- P"

(53)

Again. the bound"ry conditions at the two surfaces are satisfied completely. The last
equation in (53) indicates that stresses (1:" (1:. and ":l' arc caused totally by the normal
surfacc load p,.

4.3. Two sur/aces suhject to shear load, only
Since XI = 0 in this case. we Can set (1)1 == 0 in (13) and rewrite til! ,tnd (1).1 as <I)" and

(Il,.. After some quite tedious calculation. the approximatc governing equations for (1),, and
<{l,. can be found to be

where

V~(I) +(1_ Ct.,.Iz! vz)q,., = 0
,. 4 C ' (54)

'lc;
':1.1' = 'l1I - ~~. and

6
'Xc GIJc=

2
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The approximate mid-plane displacements and rotation in tenns of <1>u and <1>, are

173

where p = 2,'1"+<\'1,,.
The three-dimensional displacements are approximated by

and finally. the approximate stresses are described by

i' ~,\\ = -2:XJ/:Xt,:XcV1I\/I),·+II[(:XIi(l-:x)-rx{lJ/)Vl+2:X:X.:X1;i1,.,.jll- J/
2
1:;(/; {:X:XBh1

• 11

(56)

[
l ~! I 1 :'I J/:X:X(i l l I [(uc:x3 l+" :x/IJI - 'X(.( I +:x:x . - J/:X») .V I H+· ._ .. -- (:x"h - ":XI'~ )1' II + --_.. ""-- h

- " • J \I Gh - ,. "", 4:xC 6

V!:'I H Ct.c ( Il " ~l)
X (O'''' - 4C :x" 1 - ·:Xc- p.

Once more. the boundary conditions at the two surfaces are satisfied completely and
the stresses (1::. (1:x and (1:,_ are caused totally by the shear surface loads.

The stress resultants in the above three cases can be found easily.
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To verify the statement we made at the end of case 4.1, substituting mid-plane dis
placements and rotation of (51) and (55) into (47)-(49) and neglecting the higher-order
terms. we find that the result obtained in this way is indeed the superposition 01'(52)-(53)
and (56)-(57). However, for the general boundary condition (case 4.1). there does exist a
higher-order term difference between the solution by solving (46)-(49) and that by super
posing the results of the cases in 4.2 and 4.3. Obviously, it is more convenient and preferred
to solve the general surface boundary condition by dealing with the cases in 4.2 and 4.3
separately.

5. CONCLUSION AND FUTURE RESE.\RCII

Without using any ad !zoc assumptions. we have deduced various two-dimensional
exact and approximate equations for the plane problems systematically and directly from
the three-dimensional theory of transversely isotropic bodies. These equations arc very
useful in developing new refined theories for the plane problems. Note the plane problem
defined here is a generalization of the plane stress problem studied in classical two-dimen
sional elasticity for isotropic materials, where only homogeneous boundary conditions at
the two surfaces are considered. In the case of homogeneous boundary conditions, the
equations obtained for the plane problems in this paper arc exact ones in the sense that a
solution of them will satisfy 'lit the balance equations of the three-dimensional theory.
Especially. the distribution of stresses described by the hiharmonic solution is the same as
that of stresses in the classical plane stress prohlem (i.e. hoth have fT:: == fT" == fT,::::: 0). In
the case of nonhomogeneous houndary conditions. the approximate equations are aecurate
up to the second-order terms with respect to plane thickness. Without considering the
higher-order terms. stresses fT". fT,: and fT,: descrihed hy the approximate equations are
totally due to the external surface loads. Those results ohtainl..'d 1'\11' stresses fT::, fT,: and fT,:

indicate the correetness of the stress assumption (fT" :::: fT" =: (1,. = 0) in the classical plane
stress prohlem.

In the plate prohlems the equations of the relined theories have the same form as that
of other well-known classical platc theories. This property is very helpful to shmv the
validity of the new theories. For the plane problems, however. no direct comparison on the
form of equations can be made since the unknown funl.:tion in the classil:al plane problem
is the stress function. while the unknowns in the refined theories would he displacement
functions. Therefore, further research is required to verify the new plane equations. One of
the most important issues to he investigated is the specilkation of boundary conditions at
the edges of pbnes. These boundary conditions have to be specilied in terms of the stress
resultants (N,,.. N",. N,,, and T". T... ) or some combinations of mid-plane displacements
and rotation (II, l' and Ip). Even though the stress resultants T" anti T" defined here have
not been widely (perhaps never) useo before, thc correspondenl.:c between (N". N", N",.
T", T,,) and (M ". M'I' i\-f \1" V,:. V",) in plate theory indicates they arc important physil.:al
quantities and more understanding about thcm is needed.

Another aspect of future research is to apply the established equations to some specific
problems. especially the fracture problem and stress l.:oncentration problem. and compare
the results obtained with those by both the classical two-dimensional approximate theory
and the three-oimensional exal.:t theory.
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APPENDIX A: CONSTITUTIVE EQUATIONS. MATERIAL COEFFICIENTS AND
DIFFERENTIAL OPERATORS

A.I. ConSlill/tire equalions

A.2. Some coetficienls

,'=A,,+A u '
A"IJ=---

..1,,+..1 ..

f
~----

, ,·1... , II
.1,;=---, .Ii,=B+ B'- ,

A.a.J, .. - "

A"
II = --'-.

A"

:x:+II;'-1
B=----.

:!2,'

:XII = 11-,'.

For isotropic materials: :x = 1- 2v. II = " = 2( 1- v). II = (I --1')/".

A.3. Basic dilli,,,,/'tial operators

sin(,.V:)
S.V, = -- CS, =cos (.1,'11:).

.1,'11

, Sj"SS, -.Ij'SS:
Q.. ~ .I; -.Ii Q:,

when s" .... I,.I, .... 1,.\·: .... 1:

_ I-CS,
C(, = -'V" i '" O. 1. 2.

.'i,~ ~

sin V:
:- yo

n:..... (i - I )"V:--

A.-l. SOll/e diUi'r,,"'ial rdarioll.l·hip.I

sin V:
I : COs V: - yo
2 ------'11:

1-cos V- - sin V,n:, .... (i-II---
V

: -+;- '11-

, I. - 1-'11:(1"'\: _ ~I"'\I) , _.: II. 1(/1 1 IJ ')
I, ,,- u. c :xu"' "L.-.,,,SNo-;_+V~0"-70...

,1.1-. =~v:(:x"'n1 -(:x 1 +IJ·,)O' +:x/10" 1
••If Xi' / n" I t< u· .

A.5. Coji/c/or.I D"

, : I , ,
"I.,,, =; - ~V-O;',

D
"

= -'\'I~SNIJV!r:_II(\. D I2 = -.\'\;SIVuV!r",\. D , _, =.'it~SIVl)V~(.\'~SjVO-r!!).

D:, =S~SNoV1r."+(r."r..,-r.,,r.1:)"... , D 1: = -(r."r. II -r.,.r.::)" .. , DB =s~SNoV:r.,,()..

D" = -(r."r. II -r."r.:1),\.·, D,: = s~SNoV:r.'J+(r."r.J\-r."r.1:)'\ .. Dn = s,;SN"V:r."tJ•.

APPENDIX 8: ROOTS OF sin ;.;;,+ 1= 0
First, it is easy to show that equation

sin;'/;'+I =0 (BI)

has no pure real or imaginary roots.
Let x = a+ jh be a complex rool, a and h be real numbers. Then ±a±jh are roots 100. Therefore we only

need to consider Ihe region fa> 0, h > O}. Substituting x into (81), we get

SAS 28: 2-D

{
sin (a) cosh (hI +a = 0
cos(alsinh(hl+h = o. (821
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Fig. 8 I (;II. Determinalion of rool for n = I.
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Fig. BI(b}. Dett:rmination of root for" = 100.

B.I. Cmll/luhtli/l' of'rolll.I'
Clearly. e4~ (82) may haw real roOIS only when sin (tI) < 0 and ellS (tI} < O. Hence tI mllst salisfy

(2n-lltr<u«211-jltr, " ... 1.2.....

therefore

u = (2,,- \In-';. (ll))

Subslitllte u into (82),

{

COS (';)cosh (h) = (211- j)7I-';

sin (.;) sinh (h) ... h.
(841

Define

Ihen from (~)

h
tanh (h) =~

?:.(.;)

which may have positive real roots only when z.(';) > 1.
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Let ~~ be the root of the equation

• ., I cos (~) • n
.:; = (.:n- ,)1l- -'-I.-, 0 < .:; < .,-. sm .:;)

177

then ~~ is uniquely defined for any n ;;J: l. It can be shown easily that /~(;) is a d~'Creasing function of ~ when
0< ; ,.; ;~'. and an increasing function when,~ < ~ < (n,::!). and that x.(;) ,.; I when 0 < ; ,.; ~~. x.(;) > I when
;~ < ,; < (n:!), Therefore, for any n in (B3)

However. from (8").

:-0 : 1t
;"" <.., < 2'

• ' I [ h ].:; = sm - sinh (b)

h = cosh - I [/.(~)j,

(B5)

(86)

(87)

(B6) indicates that ~ is a decreasing function of h for 0 ,.; h ,.; x. and (87) indicates that h is an increasing
function of ~ for ,: < , < (It':!). Also. from (86) and (B7)

, .... ~ whcn h .... 0 and h .... x
:!

when

Thereforc. for any given n thcre e~ists one and only one ~ which s;llisllcs (83) and one and only onc h which
salisfies (8:!). This proves Ihat (81) has countable intinite numher of roots. For a given fl. we will write the
curre.spondmg II. hand'; as II•• h. and ~•. Figure Bl(a) ,nld (h) depict eqns (1\6) and (B7) for" = I amI II = 100,
respectively.

II.::!. "(",yll/ptot;c ";.'tr;I>III;o" or root",
It is not ditlicult to givc :I rigorous :lnalysis for the asymptotic distrihution Ill' roots. hut here we will usc a

rather simple method to determine the asymptotic formulation li,r hlrge ronts.
From (IH). " ..... 'x; when II - 1'.'. therefore by (Il::!) and (B6). h.·~ ·x, and .;" -0. Sim:e

sin (';,,) - .;.

it fllllows from (lH),

when .;..... 0 and
cft~

cosh (h,,) - ., •
c"..

sin (h"J - ::! when 1>,,"" [.

h. -In l(-lll -I )nj .Hld
• :! In [(411 -Illlj.. -.. (4n-I)1t

when n .... L (Ul!)

which give the asymptotic formul'ltion for large routs.


